III. Orientation of Manifolds

III.1 Orientation

1. M: n-manifold, $x \in M, U:$ open neighborhood of xLet V be a coordinate chart s.t. $(V, U, x) \cong (\mathbb{R}^n, D^n, 0).$ $H_n(M, M - x) \underset{i_*:excision}{\stackrel{\cong}{\longleftrightarrow}} H_n(V, V - x) \cong H_n(\mathbb{R}^n, \mathbb{R}^n - 0) \cong H_{n-1}(\mathbb{R}^n - 0) = \mathbb{Z}$

A choice of a generator in $H_n(M, M - x) \cong \mathbb{Z}$ is called an orientation at x.

 $\rho_x^U := j_*$: "restriction to x" and denote by $\rho_x^U(\alpha) = \alpha|_x$

Note. $j_* :\cong$ $\Rightarrow (1)(\text{uniqueness}) \forall \alpha, \beta \in H_n(M, M - U), \ \alpha|_x = \beta|_x \Rightarrow \alpha = \beta$ (2)(\exists of continuation) $\forall \beta_x \in H_n(M, M - x), \exists \beta \in H_n(M, M - U)$ s.t. $\beta|_x = \beta_x$

In general, for $A \subset B \subset C \subset M$, we have $(M, M - C) \hookrightarrow (M, M - B) \hookrightarrow (M, M - A)$. $\Rightarrow \rho_A^B \cdot \rho_B^C = \rho_A^C$ or $\alpha_C|_B|_A = \alpha_C|_A$ and restriction homomorphism is natural with respect to homeomorphism.

2. An orientation on M is a "continuous" choice $\{\alpha_x\}$ of a generator α_x of $H_n(M, M - x)$ at each $x \in M$, i.e., $\forall x \in M, \exists U$, a ball neighborhood of x and a generator $\alpha \in H_n(M, M - U)$ s.t. $\rho_y^U(\alpha) = \alpha_y, \ \forall y \in U$.

M is (R-) orientable if \exists an orientation on M.

(1) $M' \subset M$, an open submanifold. M orientable $\Rightarrow M'$: orientable. $(H_n(M', M' - x) \xrightarrow{\cong}_{i_*} H_n(M, M - x))$ (2) $\forall M$ is $\mathbb{Z}/2$ -orientable. (A choice of generator is unique.)

We can make continuity clear by viewing an orientation as a section.

Sheaf topology on $M_{\mathcal{O}} = \{\beta_x \in H_n(M, M - x) | x \in M\}$

Basis for the topology : Given $\beta_U \in H_n(M, M - U)$, $U^{open} \subset X$, $|\text{let} < \beta_U >= \{\beta_x \in M_{\mathcal{O}} | \beta_U|_x = \rho_x^U(\beta) = \beta_x\}$ Check. (1) $\forall \beta_x \in M_{\mathcal{O}}$, \exists coordinate ball neighborhood U and $\beta_U \in H_n(M, M - U)$ s.t. $\beta_U|_x = \beta_x$. (2) $\beta_x \in <\beta_U > \cap <\beta_V >$ $\Rightarrow \exists W \subset U \cap V$ coordinate ball of x and β_W s.t. $\beta_W|_x = \beta_x$. Show $<\beta_W > \subset <\beta_U > \cap <\beta_V >$: $\beta_y \in <\beta_W > \Rightarrow \beta_W|_y = \beta_y \Rightarrow \beta_U|_W|_x = \beta_U|_x = \beta_x = \beta_W|_x \Rightarrow \beta_U|_W = \beta_W$ $\Rightarrow \beta_y = \beta_W|_y = \beta_U|_W|_y = \beta_U|_y \in <\beta_U > \Box$

 $M_{\mathcal{O}}$ with this topology is called the orientation sheaf of M.

3. Properties of $M_{\mathcal{O}}$

(1) $p: M_{\mathcal{O}} \to M$ is a covering.($M_{\mathcal{O}}$ is not connected in general.) $\beta_x \mapsto x$

중명 p is continuous : $\forall \beta_x \in M_O$ and V, a neighborhood of x, $\exists U$, a coordinate ball $\subset V$ s.t. $p(\langle \beta_U \rangle) = U \subset V$.

p is open : p sends basic open sets $< \beta_U >$ to open sets U.

 $\forall x \in M$, choose a coordinate ball neighborhood U, then $\{ < \beta_U > | \beta_U \in H_n(M, M - U) \}$ evenly covers U: disjoint: uniqueness로부터 $\alpha_U|_x = \beta_U|_x \Rightarrow \alpha_U = \beta_U \Rightarrow < \alpha_U > = < \beta_U >$ open :clear

 $\begin{array}{l} (2) \mid \mid = \nu : M_{\mathcal{O}} \to \mathbb{Z}_{\geq 0} \text{ defined by } \beta_x = \nu(\beta_x) \cdot \text{a generator in } H_n(M, M-x) \cong \mathbb{Z} \text{ is continuous.} \\ \hline \mathbb{Z} \text{ is continuous.} \\ \hline \mathbb{Z} \text{ is continuous.} \\ \hline \mathbb{Z} \text{ by } \beta_x, \exists \beta_U(U: \text{ coordinate ball}) \text{ s.t. } \beta_U|_x = \beta_x. \\ \text{Suppose } \beta_U = n \cdot \alpha_U, \ \alpha_U = \text{a generator of } H_n(M, M-U), n \geq 0. \\ \text{Thm.} \Rightarrow \beta_y \in <\beta_U > \Rightarrow \beta_y = \beta_U|_y = n \cdot \alpha_U|_y \\ \therefore \nu(\beta_y) = n, \forall y \in U. \end{array}$

(3) A section s of $p: M_{\mathcal{O}} \to M$ on $A \subset M$ is continuous iff s is locally constant, i.e., $\forall x \in A, \exists U \text{ and } \beta_U \text{ s.t. } s(x) = \beta_U|_x, \forall x \in A \cap U.$ 중명 숙제 10. From now on, sections are always continuous.

(4) s, s': sections on a connected $A \subset M$ s(a) = s'(a) for some $a \in A \Rightarrow s \equiv s'$ 중명 $M_{\mathcal{O}}$ $s \nearrow \downarrow$ (Uniqueness of Lifting) $A_{cnt} \xrightarrow{i} M$

Note. $\beta_U|_{A\cap U}$ can be viewed as a section on $A\cap U$ and denote it by $\beta_{A\cap U}$.

4. We can rephrase the orientability of M as follows: M is orientable if \exists a global section $s : M \to M_{\mathcal{O}}$ with $\nu(s(x)) = 1$ and s is called an orientation.

More generally, M is orientable along $A \subset M$ if \exists a section $s : A \to M_{\mathcal{O}}$ with $\nu(s(x)) = 1$.

(1) M is orientable iff \exists a nowhere vanishing global section s:

Note. $s, s' \in \Gamma M$ = sections over M $\Rightarrow s + s' \in \Gamma M$ ns (and $rs \in \Gamma M, r \in R$)

중명 May assume M is connected. Suppose $\nu(s(x)) = |s(x)| = n \neq 0$. Then $s(x) = n\alpha_x$ for some generator α_x . $M_{\mathcal{O}} \xrightarrow{\nu} \mathbb{Z}_{\geq 0}$ $s \uparrow \nearrow \nu \cdot s$ is continuous and M is connected. $\Rightarrow \nu(s(y)) = n, \forall y \in M$. M $\Rightarrow "\frac{1}{n}s$ " is a well-defined section and locally constant. (Use $\beta_U = s|_U$) \Box (2) $M_{\mathcal{O}} - \nu^{-1}(0) (\cong M)$ is orientable : 중명 $x \in U = \frac{1}{2} - ball \subset V = coordinate unit ball.$

⇒ locally constant \Rightarrow (1)로부터 clear.

(3) Let M be connected and let \overline{M} be a component of $M_{\mathcal{O}} - \nu^{-1}(0)$. $\Rightarrow p : \overline{M} \to M$ is a covering. (at most two-fold) p is a 1-fold covering (i.e. homeomorphism) iff M is orientable. (This follows from a general fact from Covering Space Theory.)

중명 (⇒) Since p is a homeomorphism and \overline{M} is orientable, M is orientable. In fact, p^{-1} is a non-vanishing section on M. (⇐) M: orientable ⇒ \exists section s with $\nu(s(x)) = 1$. Then for $\beta_x \in \overline{M}, \beta_x = n_0 s(x)$. $\Rightarrow s' = n_0 s$ is a section and hence p is a homeomorphism. Note that since s'(M) is a connected set intersecting a component , $s'(M) \subset \overline{M}$.

Remark. The same argument shows that M: orientable $\Rightarrow \overline{M} = n_0 s(M)$ and hence $M_{\mathcal{O}} = \coprod_{n \in \mathbb{Z}} ns(M)$, i.e., $M_{\mathcal{O}} \cong M \times \mathbb{Z}$.

따름정리 1 p is a 2-fold covering iff M is non-orientable. \overline{M} is an orientable double covering of non-orientable M.

(4) $\pi_1 M$ does not have a subgroup of index 2. $\Rightarrow M$ is orientable. In particular, $\pi_1 M = 0 \Rightarrow M$ is orientable.

5. *M* is orientable along $A \subset M$ if \exists a section $s : A \to M_{\mathcal{O}}$ with $\nu(s(x)) = 1$. Let $\Gamma A = \{ \text{ sections on } A \}$: a group (or R- module) (1) M: orientable along $A \Rightarrow$

중명
$$p^{-1}(A) \stackrel{p}{\underset{s}{\leftrightarrow}} A$$
 is a covering.
 $\beta_x \in p^{-1}(A) \Rightarrow \beta_x = ns(x)$ and define $\phi(\beta_x) = (x, n)$.

 ϕ is 1-1 and onto. : clear $\forall x \in A, 3(3) \Rightarrow \exists U$, a coordinate ball neighborhood and $\alpha_U \in H_n(M, M-U)$, s.t. $\alpha_U = s$ on $A \cap U$. $\forall \beta_U$, if $\beta_U|_x = ns(x) = n\alpha_U|_x$ for some n, then $\beta_U = n\alpha_U = ns$ and

$$<\beta_{U}>\cap p^{-1}(A) = <\beta_{U}|_{A\cap U}> = <\beta_{A\cap U}> \xrightarrow{\phi}(A\cap U, n) \quad \text{commute.}$$

 $\Rightarrow \phi \text{ is a local homeomorphism.}$ $\therefore \phi \text{ is a homeomorphism.}$

따라서 다음 사실들이 성립한다.

(2) M: orientable along A and A: connected $\Rightarrow \Gamma A \cong \mathbb{Z}(\text{or } R)$. In general, $\Gamma A \cong \mathbb{Z}^k$, k = the number of components of A.

(3) M: orientable $\Rightarrow M$ is orientable along $\forall A \subset M$. In this case, $A^{connected} \Rightarrow \Gamma A \cong \mathbb{Z}$.

(4) \overline{A} : a component of $p^{-1}(A) - \nu^{-1}(0) \Rightarrow p : \overline{A} \to A$ is 1 or 2-fold covering and orientable iff p is homeomorphism. (same proof as 4(3)) M: non-orientable along $A \Rightarrow \Gamma A = 0$.

1	-	