III. Orientation of Manifolds

III. 1 Orientation

1. M : n-manifold, $x \in M, U$: open neighborhood of x

Let V be a coordinate chart s.t. $(V, U, x) \cong\left(\mathbb{R}^{n}, D^{n}, 0\right)$.
$H_{n}(M, M-x) \underset{i_{*}: \text { excision }}{\cong} H_{n}(V, V-x) \cong H_{n}\left(\mathbb{R}^{n}, \mathbb{R}^{n}-0\right) \cong H_{n-1}\left(\mathbb{R}^{n}-0\right)=\mathbb{Z}$
A choice of a generator in $H_{n}(M, M-x) \cong \mathbb{Z}$ is called an orientation at x.

$\rho_{x}^{U}:=j_{*}:$ "restriction to x " and denote by $\rho_{x}^{U}(\alpha)=\left.\alpha\right|_{x}$
Note. $j_{*}: \cong$
$\Rightarrow(1)$ (uniqueness) $\forall \alpha, \beta \in H_{n}(M, M-U),\left.\alpha\right|_{x}=\left.\beta\right|_{x} \Rightarrow \alpha=\beta$
(2) $\left(\exists\right.$ of continuation) $\forall \beta_{x} \in H_{n}(M, M-x), \exists \beta \in H_{n}(M, M-U)$

$$
\text { s.t. }\left.\beta\right|_{x}=\beta_{x}
$$

In general, for $A \subset B \subset C \subset M$, we have $(M, M-C) \hookrightarrow(M, M-B) \hookrightarrow(M, M-A)$.
$\Rightarrow \rho_{A}^{B} \cdot \rho_{B}^{C}=\rho_{A}^{C}$ or $\left.\left.\alpha_{C}\right|_{B}\right|_{A}=\left.\alpha_{C}\right|_{A}$ and restriction homomorphism is natural with respect to homeomorphism.
2. An orientation on M is a "continuous" choice $\left\{\alpha_{x}\right\}$ of a generator α_{x} of $H_{n}(M, M-x)$ at each $x \in M$, i.e., $\forall x \in M, \exists U$, a ball neighborhood of x and a generator $\alpha \in H_{n}(M, M-U)$ s.t. $\rho_{y}^{U}(\alpha)=\alpha_{y}, \quad \forall y \in U$.
M is (R-) orientable if \exists an orientation on M.
(1) $M^{\prime} \subset M$, an open submanifold. M orientable $\Rightarrow M^{\prime}$: orientable.
$\left(H_{n}\left(M^{\prime}, M^{\prime}-x\right) \underset{i_{*}}{\xlongequal{\cong}} H_{n}(M, M-x)\right)$
(2) $\forall M$ is $\mathbb{Z} / 2$-orientable. (A choice of generator is unique.)

We can make continuity clear by viewing an orientation as a section.

Sheaf topology on $M_{\mathcal{O}}=\left\{\beta_{x} \in H_{n}(M, M-x) \mid x \in M\right\}$
Basis for the topology: Given $\beta_{U} \in H_{n}(M, M-U), U^{\text {open }} \subset X$,

$$
\text { let }<\beta_{U}>=\left\{\beta_{x} \in M_{\mathcal{O}}\left|\beta_{U}\right|_{x}=\rho_{x}^{U}(\beta)=\beta_{x}\right\}
$$

Check.
(1) $\forall \beta_{x} \in M_{\mathcal{O}}, \exists$ coordinate ball neighborhood U and $\beta_{U} \in H_{n}(M, M-U)$
s.t. $\left.\beta_{U}\right|_{x}=\beta_{x}$.
(2) $\beta_{x} \in<\beta_{U}>\cap<\beta_{V}>$
$\Rightarrow \exists W \subset U \cap V$ coordinate ball of x and β_{W} s.t. $\left.\beta_{W}\right|_{x}=\beta_{x}$.
Show $<\beta_{W}>\subset<\beta_{U}>\cap<\beta_{V}>$:
$\beta_{y} \in<\beta_{W}>\left.\Rightarrow \beta_{W}\right|_{y}=\left.\left.\beta_{y} \Rightarrow \beta_{U}\right|_{W}\right|_{x}=\left.\beta_{U}\right|_{x}=\beta_{x}=\left.\left.\beta_{W}\right|_{x} \Rightarrow \beta_{U}\right|_{W}=\beta_{W}$
$\Rightarrow \beta_{y}=\left.\beta_{W}\right|_{y}=\left.\left.\beta_{U}\right|_{W}\right|_{y}=\left.\beta_{U}\right|_{y} \in<\beta_{U}>$
$M_{\mathcal{O}}$ with this topology is called the orientation sheaf of M.

3. Properties of $M_{\mathcal{O}}$

(1) $p: M_{\mathcal{O}} \rightarrow M$ is a covering.($M_{\mathcal{O}}$ is not connected in general.)
$\beta_{x} \mapsto x$
증명 p is continuous : $\forall \beta_{x} \in M_{\mathcal{O}}$ and V, a neighborhood of $x, \exists U$, a coordinate ball $\subset V$ s.t. $p\left(<\beta_{U}>\right)=U \subset V$.
p is open : p sends basic open sets $<\beta_{U}>$ to open sets U.
$\forall x \in M$, choose a coordinate ball neighborhood U, then $\left\{<\beta_{U}>\mid \beta_{U} \in\right.$ $\left.H_{n}(M, M-U)\right\}$ evenly covers U :
disjoint: uniqueness로부터 $\left.\alpha_{U}\right|_{x}=\left.\beta_{U}\right|_{x} \Rightarrow \alpha_{U}=\beta_{U} \Rightarrow\left\langle\alpha_{U}\right\rangle=\left\langle\beta_{U}\right\rangle$ open :clear
(2) | $\mid=\nu: M_{\mathcal{O}} \rightarrow \mathbb{Z}_{\geq 0}$ defined by $\beta_{x}=\nu\left(\beta_{x}\right) \cdot$ a generator in $H_{n}(M, M-x) \cong$ \mathbb{Z} is continuous.
증명 $\forall \beta_{x}, \exists \beta_{U}\left(U\right.$: coordinate ball) s.t. $\left.\beta_{U}\right|_{x}=\beta_{x}$.
Suppose $\beta_{U}=n \cdot \alpha_{U}, \quad \alpha_{U}=$ a generator of $H_{n}(M, M-U), n \geq 0$.
Thm. $\Rightarrow \beta_{y} \in<\beta_{U}>\Rightarrow \beta_{y}=\left.\beta_{U}\right|_{y}=\left.n \cdot \alpha_{U}\right|_{y}$ $\therefore \nu\left(\beta_{y}\right)=n, \forall y \in U$.
(3) A section s of $p: M_{\mathcal{O}} \rightarrow M$ on $A \subset M$ is continuous iff s is locally constant, i.e., $\forall x \in A, \exists U$ and β_{U} s.t. $s(x)=\left.\beta_{U}\right|_{x},, \forall x \in A \cap U$.

증명 숙제 10 .

From now on, sections are always continuous.
(4) s, s^{\prime} : sections on a connected $A \subset M$
$s(a)=s^{\prime}(a)$ for some $a \in A \Rightarrow s \equiv s^{\prime}$
증명

\[

\]

Note. $\left.\beta_{U}\right|_{A \cap U}$ can be viewed as a section on $A \cap U$ and denote it by $\beta_{A \cap U}$.
4. We can rephrase the orientability of M as follows:
M is orientable if \exists a global section $s: M \rightarrow M_{\mathcal{O}}$ with $\nu(s(x))=1$ and s is called an orientation.

More generally, M is orientable along $A \subset M$ if \exists a section $s: A \rightarrow M_{\mathcal{O}}$ with $\nu(s(x))=1$.
(1) M is orientable iff \exists a nowhere vanishing global section s :

Note. $s, s^{\prime} \in \Gamma M=$ sections over M
$\Rightarrow s+s^{\prime} \in \Gamma M$
$n s \quad($ and $r s \in \Gamma M, r \in R)$
증명 May assume M is connected.
Suppose $\nu(s(x))=|s(x)|=n \neq 0$. Then $s(x)=n \alpha_{x}$ for some generator α_{x}. $M_{\mathcal{O}} \xrightarrow{\nu} \mathbb{Z}_{\geq 0}$
$s \uparrow \nearrow \nu \cdot s$ is continuous and M is connected. $\Rightarrow \nu(s(y))=n, \forall y \in M$.
M
$\Rightarrow " \frac{1}{n} s "$ is a well-defined section and locally constant. (Use $\left.\beta_{U}=\left.s\right|_{U}\right)$
(2) $M_{\mathcal{O}}-\nu^{-1}(0)(\cong M)$ is orientable :

증명 $x \in U=\frac{1}{2}-$ ball $\subset V=$ coordinate unit ball.

\Rightarrow locally constant $\Rightarrow(1)$ 로부터 clear.
(3) Let M be connected and let \bar{M} be a componenet of $M_{\mathcal{O}}-\nu^{-1}(0)$.
$\Rightarrow p: \bar{M} \rightarrow M$ is a covering. (at most two-fold)
p is a 1 -fold covering (i.e. homeomorphism) iff M is orientable.
(This follows from a general fact from Covering Space Theory.)
증명 (\Rightarrow) Since p is a homeomorphism and \bar{M} is orientable, M is orientable. In fact, p^{-1} is a non-vanishing section on M.
$(\Leftarrow) M$: orientable $\Rightarrow \exists$ section s with $\nu(s(x))=1$.
Then for $\beta_{x} \in \bar{M}, \beta_{x}=n_{0} s(x)$.
$\Rightarrow s^{\prime}=n_{0} s$ is a section and hence p is a homeomorphism. Note that since $s^{\prime}(M)$ is a connected set intersecting a component, $s^{\prime}(M) \subset \bar{M}$.

Remark. The same argument shows that M : orientable $\Rightarrow \bar{M}=n_{0} s(M)$ and hence $M_{\mathcal{O}}=\coprod_{n \in \mathbb{Z}} n s(M)$, i.e., $M_{\mathcal{O}} \cong M \times \mathbb{Z}$.

따름 정리 $1 p$ is a 2-fold covering iff M is non-orientable.
\bar{M} is an orientable double covering of non-orientable M.
(4) $\pi_{1} M$ does not have a subgroup of index $2 . \Rightarrow M$ is orientable. In particular, $\pi_{1} M=0 \Rightarrow M$ is orientable.
5. M is orientable along $A \subset M$ if \exists a section $s: A \rightarrow M_{\mathcal{O}}$ with $\nu(s(x))=1$. Let $\Gamma A=\{$ sections on $A\}$: a group (or $R-$ module)
(1) M : orientable along $A \Rightarrow$

증명 $p^{-1}(A) \stackrel{p}{\rightleftarrows} A$ is a covering.
$\beta_{x} \in p^{-1}(A) \Rightarrow \beta_{x}=n s(x)$ and define $\phi\left(\beta_{x}\right)=(x, n)$.
ϕ is 1-1 and onto. : clear
$\forall x \in A, 3(3) \Rightarrow \exists U$, a coordinate ball neighborhood and $\alpha_{U} \in H_{n}(M, M-U)$, s.t. $\alpha_{U}=s$ on $A \cap U$.
$\forall \beta_{U}$, if $\left.\beta_{U}\right|_{x}=n s(x)=\left.n \alpha_{U}\right|_{x}$ for some n, then $\beta_{U}=n \alpha_{U}=n s$ and

$$
<\beta_{U}>\cap p^{-1}(A)=<\left.\beta_{U}\right|_{A \cap U}>=<\beta_{A \cap U}>\xrightarrow{\phi}(A \cap U, n) \quad \text { commute. }
$$

$\Rightarrow \phi$ is a local homeomorphism.
$\therefore \phi$ is a homeomorphism.
따라서 다음 사실들이 성립한다.
(2) M : orientable along A and A : connected $\Rightarrow \Gamma A \cong \mathbb{Z}($ or $R)$.

In general, $\Gamma A \cong \mathbb{Z}^{k}, k=$ the number of components of A .
(3) M : orientable $\Rightarrow M$ is orientable along $\forall A \subset M$. In this case, $A^{\text {connected }} \Rightarrow \Gamma A \cong \mathbb{Z}$.
(4) \bar{A} : a component of $p^{-1}(A)-\nu^{-1}(0) \Rightarrow p: \bar{A} \rightarrow A$ is 1 or 2 -fold covering and orientable iff p is homeomorphism. (same proof as 4(3)) M : non-orientable along $A \Rightarrow \Gamma A=0$.

